scholarly journals Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure This work was supported by the National Natural Science Foundation of China (No. 29825108), the State Basic Research Project, and the National Advanced Materials Committee of China. We thank Prof. Ruren Xu, Dr. Haiping Sun, Prof. Bensan Zou, Prof. Ze Zhang, and Professor Osamu Tarasaki for helpful suggestions, discussions, and transmission electron microscopy experiments.

Author(s):  
Zongtao Zhang ◽  
Yu Han ◽  
Lei Zhu ◽  
Runwei Wang ◽  
Yi Yu ◽  
...  
2013 ◽  
Vol 591 ◽  
pp. 245-248 ◽  
Author(s):  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Tao Feng ◽  
Hai Fang Xu ◽  
Dan Yu Jiang

In some applications such as automotive oxygen sensor, 5mol% Y2O3stabilized zirconia (5YSZ) is generally used because it has both excellent ionic conductivity and mechanical properties. The automotive oxygen sensor would experience a cyclic change from high temperature (engine running) environment to the low temperature damp environment (in the tail pipe when vehicle stops). The conductivity change with coupled conditions of thermal cycle and dump environment in the 5mol%Y2O3ZrO2(5YSZ) system was examined by XRD,Impedance spectroscopy and transmission electron microscopy (SEM) in this paper.


1998 ◽  
Vol 4 (3) ◽  
pp. 269-277 ◽  
Author(s):  
A. Agrawal ◽  
J. Cizeron ◽  
V.L. Colvin

In this work, the high-temperature behavior of nanocrystalline TiO2 is studied using in situ transmission electron microscopy (TEM). These nanoparticles are made using wet chemical techniques that generate the anatase phase of TiO2 with average grain sizes of 6 nm. X-ray diffraction studies of nanophase TiO2 indicate the material undergoes a solid-solid phase transformation to the stable rutile phase between 600° and 900°C. This phase transition is not observed in the TEM samples, which remain anatase up to temperatures as high as 1000°C. Above 1000°C, nanoparticles become mobile on the amorphous carbon grid and by 1300°C, all anatase diffraction is lost and larger (50 nm) single crystals of a new phase are present. This new phase is identified as TiC both from high-resolution electron microscopy after heat treatment and electron diffraction collected during in situ heating experiments. Video images of the particle motion in situ show the nanoparticles diffusing and interacting with the underlying grid material as the reaction from TiO2 to TiC proceeds.


1990 ◽  
Vol 183 ◽  
Author(s):  
J. L. Batstone

AbstractMotion of ordered twin/matrix interfaces in films of silicon on sapphire occurs during high temperature annealing. This process is shown to be thermally activated and is analogous to grain boundary motion. Motion of amorphous/crystalline interfaces occurs during recrystallization of CoSi2 and NiSi2 from the amorphous phase. In-situ transmission electron microscopy has revealed details of the growth kinetics and interfacial roughness.


2015 ◽  
Vol 45 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Jee-Hwan Bae ◽  
Keesam Shin ◽  
Joon-Hwan Lee ◽  
Mi-Yang Kim ◽  
Cheol-Woong Yang

2020 ◽  
Vol 321 ◽  
pp. 05018
Author(s):  
Eri Miura-Fujiwara ◽  
Yuya Ogawa ◽  
Mitsuo Niinomi ◽  
Tohru Yamasaki

The authors proposed an oxide coating on Ti alloys for the dental abutment tooth, and they had reported that Ti–29Nb–13Ta–4.6Zr (TNTZ) alloy forms a dense oxide layer by high-temperature oxidation. On the other hand, CP Ti forms a multilayered oxide consisted of rutile monolayers and the void layer. This morphological change by alloying is supposed to be mainly caused by Nb addition in Ti since the dense oxide layer of TNTZ mainly consists of rutile TiO2 and TiNb2O7. Therefore, in this study, oxidation behaviors of various range of Nb content of Ti-xNb alloys (x = 1 ~ 32 mol%) were investigated, and exfoliation resistance was evaluated. And in this paper, the oxide/metal interfacial microstructure of oxidized CP Ti, TNTZ alloy, and Ti-Nb alloy was studied by a transmission electron microscopy (TEM) and by a scanning transmission electron microscopy with an electron dispersive spectroscopy (STEM-EDS). The cross-sectional observations suggested that the substrate was gradually oxidized during heat treatment, and nucleation and grain growth of TiO2 and TiNb2O7 proceed at the metal/oxide interface. Consequently, the gradual oxidation process in TNTZ and Ti-Nb alloys could lead to its continuous interfacial microstructure and dense oxide structure, which can achieve high exfoliation resistance.


2019 ◽  
Vol 25 (S2) ◽  
pp. 1540-1541
Author(s):  
Daan Hein Alsem ◽  
James Horwath ◽  
Julio Rodriguez-Manzo ◽  
Khim Karki ◽  
Eric Stach

2018 ◽  
Vol 148 ◽  
pp. 1-4 ◽  
Author(s):  
Gowtham Sriram Jawaharram ◽  
Patrick M. Price ◽  
Christopher M. Barr ◽  
Khalid Hattar ◽  
Robert S. Averback ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document